ARTICLE

A tRNA half modulates translation as stress
response in Trypanosoma brucei
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In the absence of extensive transcription control mechanisms the pathogenic parasite Try-
panosoma brucei crucially depends on translation regulation to orchestrate gene expression.
However, molecular insight into regulating protein biosynthesis is sparse. Here we analyze
the small non-coding RNA (ncRNA) interactome of ribosomes in T. brucei during different
growth conditions and life stages. Ribosome-associated ncRNAs have recently been recog-
nized as unprecedented regulators of ribosome functions. Our data show that the tRNATh 3
“half is produced during nutrient deprivation and becomes one of the most abundant tRNA-
derived RNA fragments (tdRs). tRNATI halves associate with ribosomes and polysomes and
stimulate translation by facilitating mRNA loading during stress recovery once starvation
conditions ceased. Blocking or depleting the endogenous tRNATH' halves mitigates this sti-
mulatory effect both in vivo and in vitro. T. brucei and its close relatives lack the well-
described mammalian enzymes for tRNA half processing, thus hinting at a unique tdR bio-
genesis in these parasites.
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ARTICLE

he pathogenic protozoan parasite Trypanosoma brucei and

its relatives are causative agents of human African trypa-

nosomiasis in sub-Saharan regions and other devastating
diseases that are difficult to treat. T. brucei has a complex life
cycle involving two different hosts, an insect and a mammal, and
possesses clearly distinguishable developmental stages!. Despite
the fact that this protozoan organism has to adapt to different
environments it largely lacks the ability to regulate transcription
of protein coding genes. Therefore, and in contrast to other
eukaryotes, they heavily rely on posttranscriptional means to
regulate gene expression?. At first sight, the lack of transcriptional
control seems to be energetically wasteful, but it may help the
trypanosomes to react faster to environmental challenges and can
even be beneficial during host transmission. While well under-
stood posttranscriptional mechanisms of gene regulation such as
the RNAi pathways are at work in most eukaryotes, miRNA-
guided translation regulation seems to be absent in trypano-
somes?. Even though translation control is pivotal for the reg-
ulation of gene expression in T. brucei® there is little information
about how these parasites regulate protein biosynthesis at the
molecular level. Recently we have identified ribosome-associated
ncRNAs (rancRNAs) in the archaeon H. volcanii®’ and in Sac-
charomyces cerevisiae8 as potent agents involved in translation
control mechanisms. RancRNAs represent an emerging class of
translation regulators acting primarily during stress response and
include small as well as long ncRNAs (reviewed in ref. °). Over
the past years rancRNAs have been identified as riboregulators in
all domains of life. The main advantage of rancRNA-mediated
translation control is its immediate availability, since the reg-
ulatory entity is a small RNA typically derived from already
existing RNA species and capable of targeting the ribosome as the
main component of the translation machinery.

In order to investigate if rancRNAs play crucial roles in T.
brucei we have analyzed the small ncRNA interactome of ribo-
somes isolated from two different developmental stages of the
parasites exposed to different environmental conditions. We
reveal tRNA halves as one of the most strongly affected classes of
transcripts upregulated during nutrient deprivation and sta-
tionary phase. In particular, the abundance of the tRNAThr 3 half
is significantly increased and it was found to interact with ribo-
somes and polysomes upon starvation. This particular tRNA half-
ribosome interaction stimulates protein biosynthesis in vitro as
well as in vivo and appears to play a role primarily during the
stress recovery phase of T. brucei.

Results

Ribosome-associated ncRNAs in T. brucei. To gain insight into
the composition and putative biological function of the emerging
class of rancRNAs?, we generated a cDNA library encoding small
RNAs in the size range between 20 and 300 nucleotides that co-
purify with cytosolic ribosomes in T. brucei. To this end ribo-
somes and polysomes from the procyclic as well as from the
bloodstream forms of T. brucei cells in the exponential and sta-
tionary phases were collected. In addition, ribosomes were iso-
lated for rancRNA identification from procyclic cells after heat
shock, cold shock or nutritional stress. Subsequent to deep
sequencing analysis the obtained reads were analyzed using a
modified version of the previously established APART pipeline!©.
After trimming the adaptor sequences and quality control 30.1
million reads remained (in average 5 million reads per cDNA
library) that were further analyzed and resulted in 3596 putative
rancRNA candidates. All sequencing reads can be accessed via the
European Nucleotide Archive number PRJEB24915. The majority
of the sequencing reads mapped to ribosomal RNA loci, which is
not surprising given the fact that the 28S rRNA of T. brucei

ribosomes is naturally split into six fragments, most of them in
the size range under investigation. The second largest pool of
sequences mapped to tRNA loci (Fig. 1a). By comparing the
distribution of mapped reads between the different growth or
stress conditions, it was evident that upon nutrient deprivation
and during the stationary phase tRNA-derived reads became a
very abundant species and dominated the sequenced rancRNA
pool (Fig. 1la). Detailed information on all tRNA-derived
sequencing reads are compiled in Supplementary Data 1.
Length distribution of tRNA-derived reads revealed a clear peak
at around 33 nucleotides, which primarily represents tRNA halves
(Fig. 1b). By analyzing the abundance levels of tRNA halves
across different growth conditions a significantly high correlation
became evident between samples originating from heat shock,
cold shock and exponentially growing T. brucei samples on the
one side and starved and stationary cells on the other (Fig. 1c).
Furthermore this analyses revealed tRNA-fragment abundance
levels isolated from bloodstream form samples to be very distinct
from all others and indicate a unique expression pattern,
including a distinct fraction of 21 nucleotides long tRNA frag-
ments (Fig. 1b, c). tRNAs carry multiple post-transcriptional
modifications, which can hamper reverse transcription during
cDNA library preparation and thus could potentially skew con-
clusions about tRNA fragment lengths and cellular abundance. In
order to circumvent this potential limitation and to validate the
rancRNA-seq data we performed comprehensive tRNA halves
northern blot analyses on total RNA isolated from T. brucei
exposed to different stress conditions. The results support the
sequencing data by showing different levels of tRNA halves for
almost all tRNA isoacceptors (Supplementary Figure 1). These
experiments reveal that most of the detectable tRNA halves ori-
ginate from the 5’ part of tRNAs and thus further confirm the
sequencing data. In these northern analyses we noticed tRNA
processing into halves as a consequence of different growth and
stress condition to be tRNA species-dependent and thus quite
heterogeneous (Supplementary Figure 1).

The abundance of tRNA halves varies during stress. To test
which of these tRNA halves also associate with ribosomes, we
repeated the northern blot analyses on the crude ribosome pellet.
Since the sequencing and northern blot data indicated most
abundant tRNA processing into halve-mers under nutrient
deprivation (after incubating cells in PBS or during stationary
phase), we compared ribosomes isolated from starved and
exponentially growing T. brucei cultures (Fig. 1d). At least ten
tRNA halves could be clearly detected on these northern blots.
Among these potentially ribosome-associated tRNA fragments
the tRNAThr 37 half as well as the two 5’ halves originating from
tRNAAR and tRNAASP were the most abundant ones (Fig. 1d)
and showed differential cellular expression during the growth
conditions tested (Supplementary Figure 1). We first focused on
the 3’ tRNA half deriving from the tRNATh isoacceptor har-
boring the AGU anticodon (Tb427_10_tRNA_Thr_1). Based on
the sequencing reads, this half is particularly abundant during
nutrient deprivation and in stationary phase (Supplementary
Data 1, Supplementary Figure 2a). Northern blot analysis con-
firmed this abundance pattern and demonstrated that the 3’
tRNAThr half accumulates in a time dependent manner in pro-
cyclic T. brucei cells during starvation and in late stationary phase
(Fig. 2a, b). The time point of the first tRNAThr 37 half detection
(two hours of nutrient deprivation) coincides with moving
impairment of T. brucei cells. Placing the starved cells back into
normal growth media results in resumed flagellum movement
after 30 min whereas the tRNATP! half remained at constant
levels during this recovery phase for up to 2 h (Fig. 2c).
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Fig. 1 Profiling the abundance levels of rancRNA sequencing reads. a The distribution of sequencing reads fractions assigned to different RNA classes
among different growth conditions and life stages of T. brucei. Note that the category 'ncRNA" includes annotated T. brucei ncRNAs not listed otherwise. b
Read length distribution of tRNA-derived sequencing reads observed during different growth conditions. € Sample correlation matrix showing Pearson’s
correlation of expression levels of identified tRNA processing products between different growth conditions and life stages. d Ribosome-association of
tRNA halves was assessed via northern blot analyses on RNA isolated from the crude ribosomal pellet from exponentially growing cells or from cells
starved for two hours by incubating the parasite in PBS. The 55 rRNA (5S) served as loading control. tRNA isoacceptor anticodons and the origin of the

tRNA halve (5’ or 3’) are indicated

In northern blots we noticed a slower migrating band above the
mature tRNATDT in starved cells that rapidly disappears during
the recovery phase (Fig. 2). Against intuition, this slower
migrating RNA band corresponds to the tRNATM! lacking the
3’ CCA end (Supplementary Figure 3a, b). It is of note that almost
all sequencing reads originating from tRNATH! also lack the 3
CCA ends during nutritional stress (Supplementary Figure 2b).
This 3’ tRNA trimming is in fact a widespread phenomenon
under nutrient deprivation in T. brucei (Supplementary Figure 1a)
and thus potentially analogous to oxidatively stressed human
tRNAs!!. Under the starvation conditions applied (PBS incuba-
tion for at least 2 h) new tRNA transcription is likely negligible
suggesting that tRNA halves are produced during nutritional
stress from mature tRNAs lacking the 3" CCA.

A different tRNAThT half abundance pattern was observed in
the bloodstream form of T. brucei. In contrast to the procyclic
stage, which is the most prevalent form in the insect host, the
tRNAThr 37 half is already present during exponential growth in
the bloodstream form of the parasite. The tRNA half level in the
bloodstream form remained constant during starvation and
during the recovery phase (Fig. 2d).

Compared to the 3’ tRNAThT half, a completely different
expression pattern was evident for the tRNAAR 5 half
(Tb427.07.6821) (Supplementary Figure 1). It is present in easily

detectable amounts during exponential growth in the procyclic as
well as in the bloodstream form, while it is undetectable during
starvation conditions in both forms of the parasite (Fig. 3a, b).
Alleviating the nutrient deprivation by transferring the cells back
into rich media resulted in the fast reappearance of the tRNAAl
half within 15 to 30 min. Also during the stationary growth phase
this 5’ tRNA half declines in abundance as a function of increased
cell density (Fig. 3c). This indicates that fragment accumulation is
tRNA-specific and again further suggests that tRNA halves are
not unspecific degradation intermediates.

tRNA halves associate with ribosomes and polysomes. Since we
discovered the tRNA halves in an RNA-seq library designed to
identify rancRNAs we next investigated whether the identified
tRNA halves have affinity for ribosomal particles. Therefore
polysome profiles of exponentially growing procyclic cells and
cells starved for two hours were recorded in linear sucrose gra-
dients. During starvation conditions the polysomes were mark-
edly reduced and monosomes and ribosomal subunit peaks were
increased compared to the exponential growing control (Fig. 4a).
This indicates reduced translational rates and dimmed overall
metabolic activities under growth conditions where nutrients are
limiting. Fractions of the polysome gradients were collected, the
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Fig. 2 tRNATHr 3 half accumulates during stress in procyclic and bloodstream T. brucei. a T. brucei procyclic cells were starved for the indicated times by
incubation in PBS. Total RNA was extracted and the presence of the tRNATN 3" half (37 nucleotides long; see also Supplementary Figure 10) monitored by
northern blot analysis. b The presence of the tRNATH' 3" half was investigated as in a in procyclic cells grown to different cell densities (indicated on top of
the panel). ¢ Same as a but cells were allowed to recover in normal media for the indicated periods of time after nutritional stress. In the lower panel the
contrast of this part of the blot was adjusted to more clearly see the tRNATN 3 half. d T. brucei bloodstream cells were stressed by incubation in PBS and
then allowed to recover in normal growth media. The presence of the tRNATN 3’ half was analyzed as described in a. In all cases the EtBr-stained rRNAs

serve as loading controls

RNA isolated and used for northern blotting. When probing for
the tRNATEr 3/ half after nutritional stress, signals were detected
in the fractions corresponding to the large ribosomal subunit
(60S), the monosomes (80S), the polysomes and in light fractions
at the top of the gradient (free RNA) (Fig. 4b). This indicates that
the tRNATP! half indeed associates with ribosomes in vivo and its
binding site apparently resides in the large ribosomal subunit.
Even though the amount of polysomes in the sucrose gradient of
starved cells is below the limit of the applied detection system
(Fig. 4a), a clearly visible tRNATh! half signal was detectable on
northern blots (Fig. 4b). This indicates that a fraction of tRNA
halves accumulates on the few polysomes that are present in
starved cells. Quantification of the northern blot signals corre-
sponding to the full-length tRNAThr and the tRNATPr 3’ half in
the polysomal fraction demonstrated that 55% of the signal
derives from the tRNA half-mer. In human cells it was reported
that certain tRNA halves promote stress granule (SG) formation
and even become integral to the stress granules!'?13. SG forma-
tion is not only beneficial for survival during challenging condi-
tions but also for recovery from stress!. Therefore, we were
interested if the T. brucei tRNATP! 3’ half modulates SG forma-
tion and/or turnover. For this purpose, we used a cell line
expressing the YFP-tagged granule marker DHHI1 (ref. 15) and
followed the assembly of SGs in the presence of the tRNAThe 3/
half. After two hours of starvation stress granules were readily
observed in the parasite (Supplementary Figure 4). However,
stress §ranule formation does not appear to correlate with
tRNAThr halves abundance in T. brucei, since increasing its
intracellular concentration by electroporation of 3’ half tran-
scripts did not influence stress granule formation or stability

(Supplementary Figure 4). Furthermore, in the sucrose gradients
stress granules do not co-sediment with the ribosome or poly-
some fractions under the applied conditions (Fig. 4c). These
findings support the view that tRNAThr 3’ halves (i) do not
modulate genuine stress granule formation in T. brucei but (ii)
bind to ribosomes and polysomes in vivo. To corroborate ribo-
some association we performed in vitro binding studies using
gradient-purified T. brucei 80S ribosomes isolated either from
exponentially growing or from starved cells. In these binding
experiments ribosome association could be confirmed and fur-
thermore a preferential interaction of the tRNA half with stressed
ribosomes was observed (Fig. 4d).

The tRNAThr half stimulates T. brucei translation. Having
established a ribosome-association of the tRNAThr 3 half we next
tested whether this interaction has a functional consequence on
the ribosomes’ performance. Therefore, we established an in vitro
translation assay with T. brucei cell extracts using the total
endogenous mRNA pool as template and 3>S-methionine incor-
poration into proteins as readout (Fig. 5a). In the presence of the
ribosome-targeting antibiotic puromycin all radiolabeled bands
were drastically reduced demonstrating that the 3°S-methionine
labeling of proteins was translation dependent. When the assay
was performed in the presence of in vitro transcribed tRNAThr 3/
halves we observed a slight but reproducible stimulatory effect on
translation of about 20% (Fig. 5a). However, tRNAThr 37 halves
containing the CCA-tail (a species that was not detected in our
bioinformatics analyses; Supplementary Figure 2b) were unable to
stimulate translation. To investigate if the failure of translation
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stimulation by this 3’ extension is CCA sequence dependent or
simply length dependent, we repeated the assay with a tRNAThr
half carrying the sequence GGU at its 3’ end. Also this molecule
was unable to stimulate protein synthesis in vitro thus pointing
towards a length limitation effect (Fig. 5a). Furthermore, the
addition of the tRNAAR 5’ half or the 3’ half originating
from tRNAASP had no influence on in vitro protein synthesis
(Fig. 5a, Supplementary Figure 5). Both of the latter results
serve as specificity controls for the stimulatory effect of the
tRNATHT 37 half.

Fig. 3 tRNAAR 57 half is present under normal growth but disappears upon
stress in procyclic and bloodstream T. brucei. a T. brucei procyclic cells were
starved for two hours by incubation in PBS. Subsequently, the cells were
allowed to recover in normal media for the indicated periods of time. Total
RNA was extracted and the presence of the tRNAA2 5 half (length: 34
nucleotides) monitored by northern blot analysis. b T. brucei bloodstream
cells were stressed by incubation in PBS for 30 or 60 min and then allowed
to recover in normal growth media. The presence of the tRNAAI2 5/ half was
analyzed as described in a. ¢ The presence of the tRNAA2 5 half was
investigated as in a in procyclic cells grown to different cell densities
(indicated on top of the panel). In all cases the EtBr-stained rRNAs serve as
loading controls

To investigate whether these in vitro effects have a physiological
significance in the parasite we used electroporation to introduce
synthetic tRNA halves into T. brucei cells. Conditions for small
RNAs electroporation were optimized by using an siRNA (siRNA-
315) targeting a-tubulin'®, which was shown to cause a
morphological phenotype (the so called FAT cells) due to the
accumulation of multiple nuclei because of incomplete cytokin-
esis!”. The phenotype was observed 18 h after electroporation and,
under our optimized electroporation conditions, 71% of cells
displayed the FAT phenotype (Supplementary Figure 6).

We next introduced in vitro transcribed tRNATE! halves into T.
brucei cells. Northern blot analysis performed two hours after
electroporation demonstrated easily detectable amounts of the
in vitro transcribed tRNA halves inside the cells (Supplementary
Figure 7a). Omitting the electroporation step resulted in the
complete loss of the northern blot signal thus demonstrating that
the in vitro transcripts were indeed introduced into the cell
(Supplementary Figure 7b). Subsequent to electroporation the cells
were incubated under nutrient deprivation conditions and finally
transferred back to full media for recovery. 3°S-methionine
incorporation was then assessed during the stress recovery phase.
Under these conditions we observed a noticeably increased
translational activity in the presence of the tRNATHT 3/ half of
about 35% (Fig. 5b). As previously seen in vitro, addition of CCA or
GGU to the 3’ end of the tRNA half eliminated translation
stimulation, thus showing the specificity of the tRNAThr 3’ half
effect. While the length of the tRNATh 3" half appears to be critical,
the chemical identity of the 5’ end seems to be less crucial. Halves
containing a mono- or a triphosphate were equally able to stimulate
translation in vivo (Fig. 5¢). Similar to the in vitro translation assay,
the tRNAAR 5" half had no effect in vivo (Fig. 5b).

tRNAs carry multiple post-transcriptional nucleoside modifi-
cations whose biological roles in translation and beyond are only
beginning to be understood (ref. 18 and references therein). Even
the regulatory role of a tRNA-derived fragment in human stem
cells has recently been shown to depend on a post-transcriptional
modification!®. The involvement of modified nucleosides in the
biology of tRNA-derived fragments however cannot be general-
ized. The fact that in vitro transcribed tRNAThT 37 halves
stimulate translation in vivo (Fig. 5b, ¢) excludes pivotal roles of
modifications on that molecule for this particular function.
Support for this conclusion comes from LC-MS/MS-based
analyses of affinity purified tRNATHT from unstressed and starved
T. brucei cells by a neutral-loss scan approach?0. This RNA mass
spectrometry data showed highly similar modification profiles
without significant differences (Supplementary Figure 8). Thus
these findings do not leave any basis to suspect tRNAThr
nucleoside modifications for being fundamental for the stress-
dependent production of the 3’ half and for the observed
stimulatory role during translation in vivo and in vitro.

Since both tRNAs and ribosomes are highly conserved
components of the translational machinery, we next tested if
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the tRNAThT half-mediated translation stimulation can also be
observed in other species. Therefore, we introduced the synthetic
T. brucei tRNATHT half either into the halophilic archaeon
Haloferax volcanii or the yeast S. cerevisige. In both organisms we
did observe an analogous stimulation in protein synthesis
(Supplementary Figure 9a). Also mammalian protein synthesis
is stimulated by this tRNA half as exemplified by HeLa extract-
based in vitro translation reactions (Supplementary Figure 9b).
While we do not have evidence that a similar endogenous tRNA-
fragment exists in H. volcanii, S. cerevisiae or human cells, the
mere fact that the T. brucei tRNAThT half functions in distantly
related species argues for a highly conserved mode of action.

To gain first mechanistic insight into tRNATh 3" half function,
we tested whether this rancRNA stimulates translation by
promoting mRNA binding to the ribosome. To this end T. brucei
in vitro translation reactions were assembled, protein synthesis
stopped after 5 or 20 min by the addition of cycloheximide and
the ribosomes subsequently pelleted through a sucrose cushion.
Northern blot analyses on the ribosome pellet and the
corresponding supernatant fractions demonstrated enhanced
levels of the highly abundant tubulin mRNA on ribosomes
(between 1.3 and 3.8-fold) in the presence of the tRNAThr 37 half
(Fig. 5d). Concomitantly, tubulin mRNA levels decreased in the
ribosome-free supernatants thus hinting at enhanced translation
initiation in the presence of the tRNA half.

Depletion of the endogenous tRNATH' half eases stimulation.
To study the effect of the endogenous tRNATP" 3/ half on protein

synthesis we performed affinity purification using a biotinylated
antisense DNA oligonucleotide. As input the size-selected small
RNA pool (30-40 nucleotides) of T. brucei cells was utilized
(Fig. 6a). Subsequently the affinity purified material, which is
enriched in tRNAThT 3/ half, and the flow through, which
represents the small RNA pool depleted of this tRNA half
(Fig. 6b), were tested in in vitro translation reactions. Addition of
the affinity purified tRNATHT half to in vitro translation reactions
showed a very mild stimulatory effect (Fig. 6¢). The lack of sig-
nificant translation stimulation under these conditions is due to
the considerably low concentration of retrieved endogenous
tRNAThr 3/ half molecules (~1 pmol per reaction as compared to
500 pmol in regular in vitro translation reactions; Supplementary
Figure 10). However, when the endogenous pool of small RNAs
depleted from the tRNAThr 3/ half was used in in vitro translation
assays we observed a marked inhibition of translation (Fig. 6c).
This was solely due to the lack of the tRNAThT 3’ half as the
control fraction (fraction III; - biot-ASO in Fig. 6¢) did not show
such an effect. These data suggest that in T. brucei cells the
tRNATP! half counteracts the inhibitory effects of other small
RNAs, such as other tRNA-derived fragments that might be
present in this size range, on protein biosynthesis. In vivo support
for this interpretation comes from experiments introducing anti-
sense oligonucleotides (ASO) targeting the endogenous tRNAThr
3’ half. Electroporation of these ASO into T. brucei neutralizes the
role of the endogenous tRNATHT half resulting in a clear trans-
lation inhibition during stress recovery as measured in the
metabolic labelling assay (Fig. 6d).
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Fig. 5 The tRNATh' 3'-half stimulates translation in vitro and in vivo. a On the left, the autoradiographs of two representative SDS polyacrylamide gels of
in vitro translation assays performed in the absence (mock) or in the presence of in vitro transcribed tRNATN 3’ half, either containing a 3'-CCA or 3’-GGU
end (+) or lacking it (—), are shown. The mean and standard deviations of four to nine independent in vitro translation experiments in the absence (mock)
or presence of tRNA halves (either originating from tRNATH of tRNAA2) are shown on the right graph. Addition of the translation inhibitor puromycin
(Pmn) serves as specificity control for the assay (n=3). b On the left, the autoradiograph of two representative gels of in vivo translation reactions
performed in the absence (mock) or in the presence of electroporated tRNAT 3’ halves, either containing a 3’-CCA or 3'-GGU end (+) or lacking it (=),
are shown. Quantification (mean and standard deviation) of three to ten independent metabolic labeling experiments in the absence (mock) or presence of
introduced tRNA halves (either originating from tRNATH of tRNAAI) is shown on the right graph. ¢ Autoradiograph of an in vivo translation assay using
electroporated tRNATN 3’ halves containing different chemical groups at the 5” end. A representative gel of in total four independent experiments is shown.
5’-PPP: 5’ triphosphate; 5’-P: 5" monophosphate. 3’-CCA: indicates the presence or absence of a 3’ CCA tail. Significance in a and b according to paired
Student's t-test: **P < 0.01. d Abundance of tubulin mRNA (1755 nucleotides; see Supplementary Figure 17a) associated with ribosomes (P100) during T.
brucei in vitro translation reactions in the presence or absence of the tRNATH 3’ half was monitored by northern blot analysis (n = 2). S100 indicates the
respective post-ribosomal supernatants. Reactions were stopped either after 5 or 20 min of incubation. In all figures either Coomassie stained protein gels
or EtBr staining of RNA gels (bottom panels) serve as loading controls

Discussion

Kinetoplastids, including T. brucei, possess a very peculiar RNA
biology. For example, most mitochondrial mRNAs are highly
edited by insertions/deletions of uridines, all tRNAs need to be
imported into mitochondria, certain tRNAs are post-
transcriptionally processed by interdependent modification/

editing systems?!, cytoplasmic ribosomes are composed of several
distinct large ribosomal subunit rRNA fragments?2, or poly-
cistronic primary mRNA transcripts are processed into mature
mRNAs via a process called trans-splicing (reviewed in ref. 23).
All these RNA particularities are orchestrated by dedicated pro-
cessing/editing/transport machineries thus rendering them as
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Fig. 6 Depletion of endogenous tRNATHT 3" halves alleviates the stimulatory effects during translation. a Scheme of the strategy used for affinity purification
of the endogenous tRNATI 3" half from the pool of small RNAs (size range between 30-40 nucleotides). As a control the same procedure was performed
in the absence of a biotinylated antisense oligonucleotide (ASO). b Northern blot analysis of RNA extracted from the samples obtained after affinity
purification showing the successful isolation of the tRNATH 3’ half (see also Supplementary Figure 10) when using the biotinylated ASO (fraction I1+) and
its partial depletion from the corresponding flow through (compare fractions Ill, — and +ASO). A representative blot of in total two independent affinity
purification experiments is shown. ¢ Depletion of endogenous tRNATH 3’ halves from the pool of small RNAs results in reduced in vitro translation
activities. The effects of RNA fractions obtained after affinity purification were tested on in vitro translation. Quantification (mean and standard deviation)
shows the average of three independent experiments. d Chemically modified ASO complementary to the tRNATN' 3 half were electroporated into T. brucei
cells and their effect on in vivo translation was investigated by metabolic labeling during stress recovery. The autoradiograph shows a representative SDS
polyacrylamide gel in which metabolic labeling was performed in cells electroporated without an ASO (—) or cells electroporated with one (a) or two
(a+b) different ASO targeting endogenous tRNATT 3’ halves. Coomassie staining of the gel (bottom panel) serve as loading control. Quantification of
three independent metabolic labeling experiments is shown on the right. As specificity control metabolic labeling was performed also after electroporation
of an analogous ASO without any sequence complementarity to the tRNATHT 37 half (ctr). Significance according to paired Student's t-test: **P < 0.01

potential targets for therapeutic interventions. We have recently the stationary phase in the procyclic form (Fig. 1d, Supplemen-
identified the class of ribosome-associated small ncRNAs tary Figure 1, Supplementary Data 1). The production of tRNA
(rancRNAs) as a thus far unknown family of translation reg- halves by cleavage in or around the anticodon loop during various
ulators’. RancRNAs directly associate with the translation stress conditions has been observed before in different model
machinery and due to their small size and immediate availability ~ systems including Trypanosomatids®4, ciliates?®>, and mammalian
possess the potential of being first-wave regulators during stress  cells?0-2%, In the kinetoplast T. cruzi tRNA halves were also
encounters®. To gain insight into T. brucei rancRNA biology we detected during unstressed conditions’® but became more
sequenced and analyzed a rancRNA library originating from cells ~abundant under nutritional stress**. While uncovering the phy-
grown to exponential or stationary phases (procyclic as well as siological role of these tRNA fragments awaits further dedicated
bloodstream form) and from temperature-stressed or starved research, it could be shown that in T. cruzi these stress-induced
cells. It became evident that especially tRNA-derived reads tRNA halves accumulate in cytoplasmic granules. In subsequent
increase significantly upon starvation and that most of them studies, it was shown that a certain amount of these tRNA halves
represent tRNA halves (Fig. la, b). are secreted to the growth medium in extracellular vesicles3!-32

One of the most abundant tRNA-derived species originates thereby potentially delivering regulatory ncRNA molecules to
from the 3’ half of tRNATY" during nutritional stress and during other parasites as well as to mammalian cells. A similar role for
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exosome-packed small RNA molecules, including tRNA halves,
has been recently suggested in protozoan parasites of the genus
Leishmania®3. Analogous insight into the tdR RNome and its
putative function in the closely related parasite T. brucei is largely
missing>*. In variance to the tRNA halves pool in T. cruzi, which
seems to be dominated by halves originating from only a few
tRNA isoacceptors®»30, the T. brucei tRNA halves population is
much more diverse (Supplementary Figure 1, Supplementary
Data 1).

While in most reported cases the biological role and the cellular
target of the sequenced tRNA half molecules remained elusive,
some studies clearly demonstrated a function relevant for stress
response. In human cells it was shown that the stress-induced
tRNAAR 5" half inhibited protein synthesis by sequestering cer-
tain translation initiation factors and promotes stress granule
formation!>28, The tRNAThr 3/ half identified here functions in a
markedly different manner. It is produced during starvation
conditions or when procyclic T. brucei cells enter stationary phase
and it binds to ribosomes and polysomes (Fig. 4). However,
instead of inhibiting the translation machinery, as it has been
shown for other rancRNAs®8, this ribosome-bound RNA sti-
mulates protein biosynthesis (Fig. 5). Particularly after prolonged
starvation, which leads to a complete loss of cell motility, the
tRNAThr 3 half is produced, associates with ribosomes and sti-
mulates protein synthesis during the stress recovery phase.
Blocking of endogenous tRNATh halves via an antisense oligo-
nucleotide (ASO) approach or depleting the tRNAThT halves by
affinity purification eases this stimulatory effect on protein bio-
synthesis in vivo and in vitro (Fig. 6). While the tRNATP! half is
special in the sense that it is the only 3’ half identified to robustly
associate with ribosomes (Fig. 1d), structurally it does not show
any obvious peculiarities compared to other identified tRNA-
derived fragments. The aforementioned human tRNAAR 5’ half,
demonstrated to inhibit translation initiation and promote stress
granule formation, was shown to form G-quadruplexes as pre-
requisite for its biological function®. The T. brucei tRNAThr 3/
half however does not seem to adopt G-quadruplex structures
(Supplementary Figure 11) thus hinting at a different mode of
action.

Interestingly in the bloodstream form of T. brucei, the pre-
dominant form of the parasite within the mammalian host, this
tRNA half is present in easily detectable amounts throughout all
growth phases or stress situations (Fig. 2). This suggests that
during this life stage the metabolism of T. brucei can more
strongly benefit from the presence of this rancRNA. It is known
that the doubling time of T. brucei bloodstream forms is sig-
nificantly shorter compared to the insect form3°, which could be
in part related to the stimulatory effect on metabolism of the
tRNATPr 37 half. In this context it would be of great interest to
investigate the situation in other life stages, namely in the non-
dividing forms stumpy and metacyclic trypanosomes.

How can a rancRNA stimulate the ribosome during protein
production from a mechanistic point of view? When investigating
a specific endogenous mRNA we demonstrated enhanced asso-
ciation of the tubulin mRNA with ribosomes in the presence of
the tRNATPr 3 half (Fig. 5d). These findings are compatible with
the view that the tRNA half stimulates translation by promoting
the initiation phase in T. brucei. In order for the tRNAThr 3/ half
to fulfill this role in vitro and in vivo, the 3" CCA end needs to be
removed (Fig. 5a, b). We have shown that almost all tRNAs
rapidly lose their CCA end upon starvation (Supplementary
Figure 1a). In the presence of 3’ extensions on the half, CCA or
the artificially added GGU, the translation stimulatory effect is
lost. This opens the possibility for a straightforward regulation of
the tRNAThr 3/ half activity in vivo by modulating the extent of 3’
CCA tail addition/removal. Comparing northern blot signals for

the tRNATPr 3/ half to synthetic standards revealed about 2500
molecules per stressed cell. Therefore the tRNATh 3/ half is
approximately two orders of magnitude less abundant than the
expected ribosome pool in T. brucei. However, one can envision a
role of this tRNA half acting in a turnover mode. Our affinity
purification experiments demonstrated that depletion of the
tRNATPT half from the pool of small RNAs in the size range
between 30-40 nucleotides actually inhibits global translation
(Fig. 6¢). It is therefore conceivable that the tRNAThr 37 half
counteracts any inhibitory small RNA in this size range
(including other potential tRNA-derived RNAs) present in a
stressed cell. We have shown before in S. cerevisiae and H. vol-
canii that rancRNAs can have global inhibitory effects on protein
production in vivo despite the fact that they are less abundant
than the ribosome pool®3. Thus even though we do not have
uncovered the complete molecular mechanism used by the
tRNATPr 37 half to boost translation in T. brucei during stress
recovery, our data are compatible with a stimulatory role during
mRNA loading (Fig. 5d). In this scenario, the tRNATPr half-
occupied ribosomes (a complex which accumulates during
nutrient deprivation (Figs. 2a—c and 4b)) are more efficient
recommencing translation, once the parasite encounters more
favorable environmental conditions. Based on the presented SDS
gels (Fig. 5a—c), the tRNATP! half appears to affect global trans-
lation rather than specific mRNAs.

In human cells stress-induced tRNA halves are known to be
produced by angiogenin, an RNase A-type enzyme that cleaves
tRNAs in the anticodon loop2>28, T. brucei does not possess an
angiogenin homolog, implying an alternative tRNA half biogen-
esis pathway in the parasite. In humans and plants it has been
reported that tRNA-derived RNA fragments (tdRs) can also be
produced by Dicer, a central endonuclease of the si/miRNA
machinery37-38. Since T. brucei does possess the siRNA pathway
albeit lacking miRNAs, we investigated whether the Dicer
homologs might be involved in processing of the tRNAThr 3" half.
Utilizing RNAi against the two dicer-like proteins (TbDCL1 and
TbDCL2) we could exclude these nucleases as being involved in
tRNA cleavage in T. brucei (Supplementary Figure 12). In yeast
Rnyl, a member of the RNase T2 family, has been shown to
cleave tRNAs in the anticodon loop during oxidative stress thus
producing half molecules3®. However, no Rnyl homolog has been
identified in the genomes of T. brucei or its close relatives. It is
remarkable that the involvement of tdRs in regulating cellular
processes is evolutionarily so conserved (it can be observed in all
domains of life), yet their biogenesis seems to involve a big variety
of diverse enzymes. It therefore appears that in Kinetoplastids, a
completely different tRNA processing machinery is at work which
awaits to be uncovered.

The tRNAThT 3 half described herein is the latest addition of
functional tdRs reported in recent years. The class of tdRs, which
includes tRNA halves as well as also shorter fragments of ~14-26
nucleotides, was initially described in cells and organisms exposed
to challenging growth conditions in all three domains of life
(reviewed in refs. 4041), Subsequent studies revealed tdRs also
during normal conditions suggesting possible house-keeping
functions (ref. 42 and references therein). Certain tdRs have been
recognized as pivotal regulators of cell metabolism, particularly
during cellular stress and disease (reviewed in refs. 41:43), Unlike
other small ncRNA regulators (such as miRNA, siRNAs or piR-
NAs) tdRs are a structurally and functionally highly multifaceted
class of ncRNAs*0. The so far identified biological roles of tdRs
include regulation of transcription, translation, stress granule
formation, apoptosis, cell proliferation, RNAi, vesicle-mediated
intercellular communication, intergenerational inheritance, and
retrotransposition (reviewed in ref. 40). Very recently a 22
nucleotide long tdR has been identified to regulate ribosome
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biogenesis in human cells by controlling translation of crucial
ribosomal proteins*4, RNAi against this tdR resulted in impaired
cell viability and increased apoptosis in human cancer models. In
most of the reported cases on tdR function the tRNA fragment
seems to inhibit a cellular process. The T. brucei tRNATEr 3/ half
reported here is one of the few examples in which a tdR stimu-
lates a cellular function, such as translation during stress recovery.
This further diversifies the regulatory potential of tdRs as com-
pared to other small ncRNA regulators. Therefore we cannot
exclude the possibility that the T. brucei tRNAThT 3’ half has
additional biological roles in the parasite beyond translation
control. It is astounding that the “precursor” molecule of tdRs,
genuine tRNA that is, has basically one major cellular role as
substrate for the protein synthesis machinery, while processing
products thereof are functionally so heterogeneous. Thus post-
transcriptional cleavage events can generate novel regulatory
molecules thereby further increasing the complexity of cellular
RNomes in general and expanding tRNA biology in particular.

Methods

Strains and growth conditions. Trypanosoma brucei procyclic stage (PCF) 427,
29-13 or bloodstream forms New York single markers (NYSM)*® cell lines were
used in all experiments. Procyclic stage cells 427 and 29-13 were grown at 27 °C in
SDM-79 media supplemented with 5 or 10% fetal calf serum (FCS), respectively.
Bloodstream forms (BSF) were cultured in HMI-9 medium containing 10% FCS at
37°C/5% CO, (ref. 47). Cultures were harvested in the exponential growth phase at
densities lower than 2 x 107 cells/ml for PCF and 10° cells/ml for BSF. For sta-
tionary phase procyclic cells were harvested at a density of 6-7 x 107 cells/ml. For
heat shock, exponentially growing cells were incubated 30 min in 41 °C pre-
warmed medium; cold shock was applied to PCF cells by incubating them for

30 min in 13 °C media; oxidative stress: media containing 125 uM of oxygen per-
oxide (H,O,) for 1 h. Unless stated otherwise, nutritional stress was applied to PCF
cells by incubating them for 2h in 1x PBS (phosphate buffered saline) at 27 °C.
Nutritional stress of BSF involved incubation for 1 h in 1x PBS at 37 °C. A cell line
expressing an endogenous copy of DHH1 N-terminally tagged (eYFP) was con-
structed using a plasmid kindly provided by Kramer and Carrington!®. Transfec-
tion, cloning and selection of transgenic 427 procyclic cells were done as
described?8.

RancRNA library preparation and bioinformatics analyses. Ribosome-
associated small RNAs were isolated as described?’. The cDNA library was pre-
pared using the TruSeq Small RNA Library Prep kit (Illumina) and sequenced
using the [llumina HiSeq 2000 platform. Bioinformatics analysis was performed as
described by Luidalepp et al.> with the exception that four mismatches were
allowed. Overlapping read pairs were joined using Pandaseq®!. Next, reads were
mapped to the T. brucei TREU927 reference genome obtained from TriTrypDB>2
using STAR>3. The genome annotation in version 32 of TriTrypDB was com-
plemented with tRNA gene prediction using tRNAscan-SE>* and transcript fea-
tures were extended by 50 nucleotides up and downstream to include tRNA
precursor regions. Subsequently, reads mapping within annotated transcripts were
extracted and putative processing products were identified with a modified version
of the APART pipeline!®. In particular, for the identification of RNA processing
events, read blocks as defined using the blockbuster algorithm® were used instead
of contigs composed of overlapping reads. The normalization of expression levels
across samples was performed using the Bioconductor and edgeR package®®. The
statistical analysis was performed in the R environment. All sequencing reads were
submitted to the European Nucleotide Archive (ENA) and can be accessed with the
number PRJEB24915.

Electroporation of procyclic T. brucei cells. Exponential growing 427 cells (4.5 x
107) were harvested by centrifugation (1400 x g for 10 min at 4 °C) and resus-
pended in 1 ml of ice cold 1x Cytomix (25 mM HEPES/KOH pH 7.6, 10 mM
K,HPO,, 120 mM KCl, 0.15mM CaCl,, 5mM MgCl,, 2 mM EDTA). Cells were
washed with 1 ml 1x Cytomix, resuspended in 190 ul 1x Cytomix and mixed with
500 pmol of in vitro transcribed tRNA half in 1x annealing buffer (10 mM Tris-
HCJ; pH 7.6, 80 mM MgCl,) to a final volume of 200 pl. The mixture was elec-
troporated twice using a Bio-Rad gene pulser II (1.2 kV, 25 uF, and 0 Ohm) in a
4 mm electroporation cuvette (EP-104, Cell Projects Ltd.). Finally, the procyclic T.
brucei cells were resuspended with 1 ml of SDM-79 (5% FCS) and transferred into
pre-warmed 3 ml medium for a 2 h recovery at 27 °C. The following RNA strands
were produced by in vitro transcription using T7 RNA polymerase®”->8 and sub-
sequently introduced with this approach into T. brucei: Thr_(AGU)-3'-half +
CCA: 5" AAGACGGAGGUCGGGGGUUCGAUCCCCCCAGUGGCCUCCA 3,
Thr_(AGU)-3'-half-CCA: 5 AAGACGGAGGUCGGGGGUUCGAUCCCCCCA
GUGGCCU 3', Thr_(AGU)-3'half + GGU: 5> AAGACGGAGGUCGGGGGUUC

GAUCCCCCCAGUGGCCUGGU 3’, Thr_(AGU)-5'-half: 5> GGCCGCUUAGCU
CAAUGGCAGAGCGCCGUCCUAGU 3'. The tRNAAR 5’ half used was a syn-
thetic oligonucleotide (Microsynth) with the sequence Ala_(CGA)-5'-half: 5’
GGGGAUGUAGCUCAGAUGGUAGAGCGCCCGCUUAGC 3'.

Metabolic labeling. Translation activity in T. brucei was monitored by metabolic
labeling. 4.5 x 107 procyclic cells were electroporated with the tRNA halves

(500 pmol) as described above, allowed to recover for 2 h under normal growth
conditions and finally stressed by incubation in 1x PBS. After 2 h of nutritional
stress, the cells were again harvested (see above) and resuspended in 750 pul pre-
warmed media. 1/3 or the cells were used for RNA extraction and subsequent
detection of the electroporated tRNA halves by northern blot analysis. The
remaining 2/3 of the cells were mixed with 250 ul SDM-79 (5% FCS) containing 2
pl of L-35S-methionine (10 pCi/y, Hartmann Analytic) and incubated for 60 min at
27 °C. After metabolic labeling the cells were harvested, resuspended in 1x Laemmli
buffer and proteins were separated by 10% SDS-PAGE. Radiolabeled methionine
incorporation was measured by phosphorimaging. Metabolic labeling in H. volcanii
and S. cerevisiae was performed as described previously®S.

Inactivation of tRNATH" 3’ half by ASOs. To block the endogenous tRNAThr 3/
half, modified ASOs were used (ASO_a: mG*mA*-

mA* mCmC* C* CX C C* G A*C* C T C* CrmG* mT*mC*mT*mT and ASO_b
mA*mG*mG*mC mCA*C* T*G*G*G*G* G*G* A* mT*mC*mG*mA*mA, Qiagen).
As specificity control an analogous ASO strand with a completely unrelated
sequence was used (ASO_ctr: mG*mU*mA*mU*mU*T*A*-
CA*A*T*T*G*A*C*mG*mU*mA*mU*mA. All ASOs were designed as RNA/
DNA/RNA chimeras with a phosphorothioate backbone (asterisks). The ten central
deoxyribonucleotides are flanked by five 2'-O-methyl modified ribonucleotides.
500 pmol of the ASO were electroporated into 4.5 x 107cells. After two hours of
recovery in normal media nutritional stress was applied for four hours and global
translation was assessed during a two-hour recovery period by metabolic labeling
as described.

Cell extract preparation. Cells grown under different conditions were harvested
(see above) and the cell pellets (1-3 x 10 cells) resuspended in 500 pl ribosome
buffer A (120 mM KCl, 20 mM Tris/HCI pH 7.6, 2mM MgCl,, 1 mM DTT)
containing 20 mM ribonucleoside vanadyl complex (RVC, Bioconcept) and 2.5 pl of
RiboLock (40 U/ul, Thermo Scientific) and flash frozen. Samples were passed 10
times through a 25G needle and 10 times through a 27G needle and extracts were
cleared by centrifugation. Cell extracts were aliquoted, snap frozen and stored at
—80 °C until use.

T. brucei in vitro translation. One in vitro translation reaction with a total volume
of 30 pl is composed of 6 pl “translation mix” and 24 ul “sample mix”. The 6 pl
translation mix contained 3 pl 10 x translation cocktail (100 mM Hepes/KOH pH
7.4, 15 mM Mg(OAc),, 750 mM KOAc, 4 mM GTP, 10 mM ATP, 500 uM of each
amino acid except methionine), 0.5 pl of Mg(OAc), (100 mM), 0.5 ul of creatine
phosphokinase (10 mg/ml, Roche), 1 pl of creatine phosphate (0.6 M) and 1 pl of L-
35S-methionine (10 pCi/ul). The 24 ul sample mix was composed of 3 ul DMSO,
7 W T. brucei cell extract (extract prepared as described above and this volume
corresponds to 2-4 x 107 cell equivalents) containing 20 mM RVC, 7.5 ul ribosome
buffer B (120 mM KCI, 20 mM Tris/HCI pH 7.6, 8 mM MgCl,), 500 pmol tRNA
halves in annealing buffer (10 mM Tris/HCI pH 7.6 and 20 mM NaCl). The
reaction was started by combining the translation mix with the sample mix and
proceeded for 20 min at 27 °C. The reaction was stopped by addition of 1x Laemmli
buffer and incubation at 95 °C for 2 min. Proteins were subsequently separated on a
10% SDS-PAGE gel and methionine incorporation was monitored by phosphor-
imaging. For testing the tRNAASP 3’ half (anticodon GUC) during in vitro trans-
lation, the in vitro transcribed RNA strand 5° CACGCGGGUGACCCGGGU
UCAAUUCCCGGCCGGGAAGCCA 3’ was used as above. To test the effect of
endogenous tRNATPr 37 half 5l (~1 pmol) of affinity purified samples (or the
equivalent volume of the corresponding flow through) were used with 3.5 pl cell
extract prepared with RVC, 2.5 pl ribosome buffer B in a total volume of 10 pl.
Subsequently 3 pl of translation mix was added. The reaction was incubated and
stopped as described above.

To assess the mRNA association to T. brucei ribosome, the equivalent to four
in vitro translation reactions (using cold L-methionine) were run as described
above and stopped after 5 or 20 min by the addition of cycloheximide (final
concentration 100 pg/ml). Samples were loaded onto 800 ul of a 1.1 M sucrose
cushion prepared in ribosome buffer A containing 1 mM DTT and 100 pg/ml
cycloheximide. After centrifugation (2.5h at 200,000 x g, 4 °C) the supernatant
(S100) was recovered, 2.5 vol. 100% ethanol was added and incubated overnight at
—20°C. Samples were centrifuged (16,000 x g, 45 min, 4 °C), the pellets
resuspended in 1 ml of trizol and RNA was extracted following the manufacturer’s
instructions. RNA was also extracted from the pellet fraction (P100) of the
200,000 x g centrifugation step (see above) using trizol and used for mRNA
northern blotting (see below).
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Affinity purification of tRNATH* 3 half. To affinity purify the endogenous
tRNAThT half the cell lysates obtained from nutritionally stressed cells were first
incubated for 1 h at room temperature prior to total RNA isolation. Hybridization
to a complementary DNA strand was done by incubating 1 ul (100 pmol) of a 3’
end-biotinylated antisense DNA oligo (biot-ASO) with 5 pg of size-selected
(30-40 nt) total RNA in 100 pl of 5x SSC buffer (750 mM NaCl, 75 mM trisodium
citrate). The sample was denatured for 3 min at 90 °C followed by hybridization for
10 min at 65 °C. The RNA-DNA hybrid was immobilized onto pre-washed
Streptavidin magnetics beads (25 pl, Roche diagnostics) and incubated for 30 min at
room temperature with rotation. The supernatant containing the unbound RNA
pool (flow through) was removed and stored for future use. Beads were washed
once with 50 pl of 1 x SSC buffer and 3 times with 50 pl of 0.1 x SSC buffer. The
tRNATHT half was eluted by heating the beads in 100 ul of water at 75 °C for 3 min.
Contaminating biot-ASO were removed by DNase I treatment (Thermo Scientific).
The affinity purified tRNA half was extracted by using Roti®-Aqua-P/C/I (Roth).
Finally, the RNA of the flow through and the affinity purified tRNA half were
precipitated with 2.5 volumes of 100% EtOH at —20 °C overnight. The samples
were washed with 70% EtOH and resuspended in 15 pl water. To verify the quality
of the affinity purification procedure 200 ng of RNA was loaded onto a denaturing
8% polyacrylamide gel followed by northern blot analysis. The sequence of the
complementary DNA oligonucleotide (biot-ASO) used for affinity purification was
5" AAGCCACTGGGGGGATCGAACCCCCGACCTCCGTCTTACTAGGACG
GCGCTCTGCCATTGAGCTAAGCGGCCAAA 3’ (Microsynth). The 3" AAA
overhang was added for better binding to the beads. As control, the entire affinity
purification procedure was performed in the absence of biot-ASO as well.

Polysome profiling. For polysome profiling, cell extracts were prepared as pre-
viously described without the addition of RVC from exponentially growing or
nutritionally stressed cells. 50-100 OD,g4( of cell extract was layered on top of a
10-40% (w/v) sucrose gradient prepared in ribosome buffer A in SW 32Ti tubes
(Beckman Polyallomer Centrifuge tubes 25 x 89 mm). The gradients were cen-
trifuged in a Beckman SW 32Ti rotor (6 h at 25,000 rpm at 4 °C). Gradients were
pumped out and fractions were collected every 16 s while continuously monitoring
the absorbance at 260 nm. For downstream northern blot analyses the desired
fractions were pooled and precipitated with EtOH before RNA extraction with 1 ml
of TRI Reagent (Zymo Research). For 80S ribosome preparation, the fractions
containing monosomes were pooled into a Beckman Optiseal Polyallomer tubes
(volume 32.4 ml) and filled up with 1x ribosome buffer A. The ribosomes were
pelleted by ultracentrifugation at 33,000 rpm (100,000 x g) for 17 h at 4 °C (rotor
type 60 Ti, Beckman). After centrifugation the pellet was resuspended in 200 ul
ribosome buffer A. The concentration of ribosomes was determined by the
absorption at 260 nm (1 A,s = 18 pmol 80S).

Northern blot analyses. For northern blotting, 3-40 g total RNA extracted with
TRI Reagent (Zymo Research) according to the manufacturer’s protocol was
complemented with 1 volume of 2x RNA loading dye and separated on an 8%
denaturing polyacrylamide gel (7M Urea, in 1x TBE buffer). The gel was subse-
quently electroblotted onto a nylon membrane (Amersham Hybond N+, GE
Healthcare) as described’. See Supplementary Methods for a full list of DNA
oligonucleotides used.

For tubulin mRNA northern blot analyses 1.6-3.1 pg RNA of the S100 and
4.4-6.0 ug RNA P100 fractions (see in vitro translation procedure above) were run
on a 1% agarose gel in 20 mM MOPS buffer (pH 7.0) containing 1.5%
formaldehyde. Subsequently the RNA was blotted onto a nylon membrane
(Amersham Hybond N+, GE Healthcare) by passive transfer. DNA probes were
prepared from gel-purified PCR products of the tubulin gene and radioactively
labelled by using the Prime-a-Gene labelling protocol (Promega). 2.5 pl of a
mixture of random hexamers (100 uM; Thermo) and 5 ng of PCR product in a total
volume of 17.5 pl were heated to 95 °C for five minutes to dissociate the dsDNA.
After reanneal the random hexamer primers were extended by 1.5 pl of Klenow
polymerase (3 U) by the addition of 2.5 ul Klenow buffer, 1 pl of dNTPs (20 uM
final concentration dATP, dTTP, dGTP), 2.5 pl of [a->2P]CTP for 1h at 37 °C. The
reaction was stopped by adding 2 pl of 0.5 M EDTA and 70 ul H,O. The northern
blot probe was heated to 95 °C for five minutes and subsequently added to the
prehybridized membrane. See Supplementary Figures 13-17 for uncropped blots
and full-length gels.

Western blot analyses. Fractions (16 s) were collected from a polysome profiling
experiment of either exponential or PBS stressed DHH1-YFP tagged cell lysate (60
OD g cell extract per gradient). Ten microlitres of every third fraction was mixed
with 2x Laemmli buffer, denatured at 95 °C for 2 min, loaded on a 10% SDS-PAGE
gel, and run for 1h at 160 V. The gel was transferred onto a nitrocellulose
membrane (Amersham Biosciences) and blocked for 1h in 1x PBS containing 0.1%
Tween-20 in 5% nonfat dry milk. The membranes were incubated with mouse
anti-GFP antibody (1:1000, Roche; cat. number: 11814460001) at 4 °C overnight.
After washing (3 x 10 min each with 1 x PBS, 0.1 % Tween-20) horseradish per-
oxidase conjugated secondary antibodies were added for 1h at room temperature
(1:3000; Roche). The membranes were washed as before and results were visualized

using an enhanced chemiluminescence SuperSignal West Femto Maximum Sen-
sitivity Substrate (ThermoFisher Scientific).

In vitro binding studies. Binding studies of tRNATh 3" half to ribosomal particles
purified from stressed or unstressed cells (as described above) were performed
using a dot blot-filtering approach. For the filter binding assay 5 pmol of T. brucei
80S ribosomes were incubated with 1 pl of 5-[32P]-end-labeled tRNAThr half

(4 pmol/pl) in 25 pl ribosome buffer B for 30 min at 27 °C. After incubation the
reactions were filtered through a nitrocellulose membrane (0.45 pM diameter)
using a vacuum device, followed by 2 washing steps with ice cold buffer B.
Membranes were exposed to phosphorimaging screens for 1 h and quantified with
a phosphoimager.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All sequencing data generated in this study have been deposited at the European
Nucleotide Archive (ENA) and can be accessed with the number PRJEB24915. All
other data are available from the corresponding authors on request. A reporting

summary for this article is available as Supplementary Information file.
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